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We have applied the finite-element method to electron-molecule 
collision with the exchange effect implemented rigorously. All the 
calculations are done in the body-frame within the fixed-nuclei ap- 
proximation, where the exact treatment of exchange as a nonlocal 
effect results in a set of coupled integro-differential equations. The 
method is applied to e-H2 and e-N2 scatterings and the cross sections 
obtained are in very good agreement with the corresponding results 
we have generated from the linear-algebraic approach. This con- 
firms the significant difference observed between our results gener- 
ated by linear-algebraic method and the previously pub!ished e-N2 
cross sections (M. A. Morrison and B. C. Saha, Phys. Rev. A 36, 
3682, 1987). Our studies show that the finite-element method is 
clearly superior to the linear-algebraic approach in both memory 
usage and CPU time especially for large systems such as e-N2. The 
system coefficient matrix obtained from the finite-element method 
is often sparse and smaller in size by a factor of 12 to 16, compared 
to the linear-algebraic technique. Moreover, the CPU t ime required 
to obtain stable results with the finite-element method is signifi- 
cantly smaller than the linear-algebraic approach for one incident 
electron energy. The usage of computer resources in the finite- 
element method can even be reduced much further when (1) scatter- 
ing calculations involving multiple electron energies are preformed 
in one computer run and (2) exchange, which is a short range effect, 
is approximated by a sparse matrix, © 1995 Academic Press, Inc. 

I. INTRODUCTION 

The finite-element method (FEM) [1-3] is proven to be 
a very powerful technique to solve problems in all areas of 
engineering and physics. These problems, which are commonly 
described by differential, integral, integro-differential, or varia- 
tional equations over a given domain, can be solved by the 
FEM even for the most complicated boundary conditions. This 

0021-9991/95 $12.00 
Copyright © 1995 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

method divides the domain of interest into small subdomains 
called elements. Within each element, the solutions to the gov- 
erning system equations are approximated by a linear combina- 
tion of simple functions such as polynomials. The expansion 
coefficients within each element are then found such that a 
predefined residual error associated with this approximation is 
minimized while the global boundary conditions of the problem 
are satisfied. 

In recent years, the FEM has been applied to scattering 
problems in atomic and molecular physics [4-6]. The major 
drawback of the FEM in these problems is the implementation 
of the K-matrix boundary conditions [7]. These boundary condi- 
tions extend the domain for the FEM analysis all the way 
into the asymptotic region, where the analytical form of the 
electronic wave function is known. In this case, the number of 
elements required for the study is large, resulting in a huge 
linear algebraic system equations that must be solved for the 
expansion coefficients in each element. The system equations 
obtained from the FEM are usually sparse and can be solved 
economically. However, for large molecules with multichannel 
scattering, the K-matrix boundary conditions still pose a severe 
demand on computer memory making FEM computationally 
prohibitive. 

The FEM and R-matrix propagation technique have been 
combined recently to significantly reduce the memory demand 
in scattering studies [8]. In this approach, the R-matrix boundary 
conditions are imposed at the maximum radial distance occu- 
pied by most of the charge cloud of the molecule. This reduces 
the domain for FEM analysis by at least one order of magnitude 
compared to the K-matrix boundary conditions. Therefore, the 
number of elements used in implementing the R-matrix bound- 
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ary conditions is small and the size of the linear-algebraic 
system equations obtained is manageable. This makes FEM 
very competitive with other numerical techniques available to 
study scattering problems. 

In our previous work [8], the FEM and R-matrix propagation 
technique were applied to electron-molecule collision using 
model exchange. In the work presented here, we employ this 
approach to study exact exchange implementation in these colli- 
sions. In the body-frame within the fixed-nuclei approximation, 
this amounts to solving coupled integro-differential radial equa- 
tions. We apply our method to e-H2 and e-N2 systems and 
compare our cross sections with those we have obtained from 
the linear-algebraic (LA) method. We also compare our e-N2 
cross sections with the previously published results [9]. This 
comparison shows significant differences in cross sections espe- 
cially near the I-I, resonance energies. We discuss the memory 
and CPU time requirements of the two approaches and show 
that to obtain results which are in agreement to within 1%, the 
FEM is superior to the LA approach in using computer re- 
sources. 

The material in this paper is arranged in the following order. 
In Section II, we discuss the scattering equations appropriate 
to electron-molecule systems with the exchange effect imple- 
mented rigorously. Section III covers the FEM implementation 
of the resulting BF-FN radial equation and its advantages over 
a few other techniques that implement exact exchange. We 
compare our FEM and LA results for the e-H2 and e-N2 systems 
in Section IV and discuss the differences between the new and 
previously published e-N2 cross sections. Finally, Section V 
compares the use of computer resources for the two codes to 
obtain stable results. 

II. SCATTERING THEORY 

The body-frame fixed-nuclei (BF-FN) Schrodinger equation 
for electron-molecule collision has the form [7] 

[V 2 - 2Vim(r, R) + k0]u(r, R) = 0, (1) 

by averaging the coulomb potential energy over the X t~[, wave 
function [10]. 

For polarization, we use an ab initio potential developed by 
Gibson and Morrison [11]. This polarization potential, Vr,,,(r, 
R), is determined from self-consistant-field (SCF) calculations, 
where the induced polarization is determined as the difference 
between two energy-optimized functionals of an adiabatic elec- 
tron-molecule Hamiltonian. With the scattering electron fixed 
in space, these two functionals correspond to polarized and 
unpolarized target wave functions, respectively. The nonadia- 
batic effects are then incorporated using a nonpenetrating ap- 
proximation originally introduced by Temkin [12]. The polar- 
ization potential has the asymptotic form 

czo(R) c~2(R) 
V~,t(r, R) 21.4 21.4 P2(cos 0), (3) 

where oq,(R) and c~2(R) are spherical and nonspherical polariz- 
abilities, respectively. 

The exchange effect is the result of explicitly imposing the 
antisymmetrization requirement of the Pauli principle on the 
system wave function. This potential term has the form [7] 

V~x(r, R)u(r, R) = f K(r, r ' )u(r ' ,  R) dr', (4) 

where 

N~c 

K(r, r ')  = - ~ ~ ; ( r ) l r  - r ' l - '  cI)'*(r'). 
i=1 

(5) 

In this equation, qb;(r) is the ith molecular orbital and N~ is 
the number of occupied orbitals. 

Expanding the scattering electron wave function, molecular 
orbitals, interaction potentials, and the I r - r '  I-' term in these 
equations in terms of spherical harmonics and Legendre polyno- 
mials and integrating over the angular variables transform Eq. 
(1) to its desired coupled radial form [7, 9] 

where k~ and u(r, R) are the energy and wave function of the 
scattering electron, respectively. In (1), r represents the position 
vector of the scattering electron with respect to the center of 
mass of the nuclei and R is the vector representing the in- 
ternuclear separation of the target. The interaction potential 
between the scattering electron and the target molecule is repre- 
sented by V~,~(r, R). This potential can be written in terms of 
its static, polarization, and exchange components as 

V~n,(r, R) = V.,,(r, R) + Vpo~(r, R) + V,x(r, R). (2) 

Static potential results from the coulomb interaction between 
the scattering electron and the constituent electrons and nuclei 
of the target molecule. This potential term is implemented here 

d l(l + 1) 
~FF 2 i .2 

/mix 

- -  + ko .i~,,0) = 2 ~ Vi~,(r).~:,0") 
I' 

(6) 

--2 ~.. f Ki~..(r, r')ui~t,,(r')dr', 

where A is the projection of the angular momentum along the 
internuclear axis (g axis), l is the orbital angular momentum 
of the scattering electron, and l0 designates a particular linearly 
independent solution. In this equation, Vi),(r) is the coupling 
matrix element associated with the static and polarization poten- 
tials. This term can be expressed in terms of the Clebsh-Gordan 
coefficients [13] and the expansion coefficients of these two 
potentials in terms of Legendre polynomials, vA(r), as [9] 
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2l' + 1'] 1/2 a"~' 
Vi),(r) = \ 21 + 1 ] a=,, ~ va(r)C(l'hl; AO)C(l'hl; 00), (7) 

with A denoting the order of  a particular Legendre polynomials. 
The exchange kernel Ki),(r, r') is given by [7] 

N,,¢c Arnax /~ax 
K}},(r, r ' ) =  E E E 

i = l  a=0 I "1"  

r~ 
i I t  t i t  i . H t ga(ll 1 l ]mmi)qSr,,,(p )qbr,,,(r )ra>+ I, 

(8) 

where 

( ( 2 / +  1)(2/'_+_ 1) ~,c 
ga(ll'l"l"lmmi) 

\(277' -7- I ) (2 /"  + 1)/  

C(0AI"; - m ,  m - mi) 

× C(IAI"; 00)C(I 'AI";  m, mi-m) 

C(I 'AI";  00), 

(9) 

and r< (r>) is the minimum (maximum) of r and r ' .  The maxi- 
mum order of  partial waves included in the scattering equation 
and its exchange term are/max and leX~, respectively. These two 
terms may not have the same values because convergence can 
be achieved with a smaller number of  partial waves included 
for the exchange interaction. Note that the R coordinate is 
suppressed in Eq. (6) since the rigid-rotor approximation is 
used which treats R as a parameter fixed at its equilibrium 
value. Equation (6) represents the standard BF-FN radial equa- 
tions with the exchange effect implemented rigorously. These 
coupled integro-differential equations relate superposition of 
the wave function with weights K~;.(r, r') over the entire domain 
of interest to its value at a given point. The objective of  this 
work is to solve these equations via the finite-element method 
to obtain the R-matrix which can then be propagated into the 
asymptotic region to find the K-matrix and scattering cross 
sections [ 14]. 

III. FINITE-ELEMENT ANALYSIS OF THE BF-FN 
RADIAL EQUATIONS 

The BF-FN radial equations expressed in Eq. (6), which treat 
exchange as a nonlocal effect, involve the integral of  the wave 
function over the domain of interest. In case of  the R-matrix 
boundary conditions [7], this domain extends up to r = a which 
defines the maximum radial distance occupied by most of  the 
charge cloud of  the molecule where the interaction potential is 
strong. The R-matrix boundary conditions for this problem are 
as follows [8]: at r = 0, u;~o(r) is the zero matrix; at r = a, 
OU~o(r)/Or is the identity matrix. Since u~o(r = a) is the 

R-matrix, it can then be propagated into the asymptotic region 
to obtain the K-matrix and scattering cross sections. 

The finite element model applied to this problem is based 
on the Galerkin method [1]. The wave function ui~,,(r) in any 
element is approximated by 

2 
u~l,,(r)=~(qb.(x)u~+(o,~(x)a~). O--<x--  < 1. (I0) 

Cf = I 

where 

[ 2 x  3 - 3 x  2 +  1, o t =  1, 
q~(x) = [3x2 2x3, ot = 2, (11) 

and 

x 3 - 2 x  2 + x ,  o r=  1 
,~(x) = . ' (12) 

x 3 x-, ~ = 2, 

define the basis for the expansion of the wave function in every 
element. In Eq. (10), x = 0, 1 represent the end points of  any 
element with the actual radial distance r within an element 
given by r = (n - 1)h + hx, where n is the element index 
and h is the mesh size. These definitions force u~ and a ~ to 
be the values of  the wave function and its derivative at the end 
points of  an element (x = 0, 1). 

To implement FEM using R-matrix boundary conditions, we 
multiply Eq. (6) by each of the basis functions ~b~ and ~ and 
integrate in the range r = 0 to a. We now have 

r=0 drr 2 r ----;U-- + k?3 U,o(r) 

/max t - 2 ~ V,,(r)uAt(r) qbi(x) dr 
I '  

+ 2  f[0 ;=0 K,,.(r, r')u;~to(r' ) dr' qbi(x)dr = O, 

(13) 

where ~bi(x) (i = 1, 4) represents any of  the basis functions 
~b~ and ~,,. 

The integrals in Eq. (13) are discretized into N small elements 
and within each element, U;~o(r) is approximated by Eq. (10). 
Once each integral over an element is evaluated, the results 
can be added together to obtain the homogenous equations AU 
= 0 which approximates Eq. (6). The first integral term in Eq. 
(13), which breaks down to single integrals over elements, 
transforms into a coefficient matrix of  size (2N + 2)m, where 
N is the total number of  elements in the finite-element analysis 
and m is the number of  coupled equations. This matrix is sparse 
and can be divided into m 2 partitions of  diagonal matrices with 
a bandwidth of three. Each partition would then represent the 
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contribution of  one of the radial wave functions, u,,,(r), to the 
overall set of coupled differential equations. Discretizing the 
second integral term in Eq. (13) results in double integrals that 
extend over different elements n and np such that r = (n - 
1)h + hxand r '  = (rip - 1)h + hr. In other words, the nonlocal 
exchange effect causes different elements to be coupled to each 
other. Substituting Eq. (10) into these double integrals and 
adding the results transform the second term in Eq. (13) into 
a full matrix of  size (2N + 2)p, where p is the number of 
exchange channels. This implies that the matrix representation 
of exact exchange effect in FEM consists of  p-' partitions and 
is not sparse. The system coefficient matrix A is now obtained 
by adding the matrix representations of the two integral terms 
in Eq. (13). This system matrix has p2 full partitions and 
m-' - p2 diagonal partitions with a bandwidth of  three. If the 
number of  exchange channels become equal to the number of 
channels in the scattering problem, the sparsity of  A is com- 
pletely lost. Implementation of the boundary conditions de- 
scribed before in the system equations AU = 0 results in a set 
of nonhomogenous equations from which the R-matrix can 
be computed. 

The finite-element method has two advantages over the very 
few other techniques that can solve the exact exchange BF- 
FN radial equations. These advantages are the CPU time and 
computer memory usage. The square coefficient matrix A can 
be written as 

A = A, + k ~ 2 ,  (14) 

where A~ is the matrix obtained from applying the finite-element 
method to all the terms in Eq. (13), except the electron energy 
term which is represented by k ~ 2 .  From Eqs. (13) and (14), 
it is clear that since A~ and A2 are independent of  the energy 
of the incident electron, they only need to be computed once 
for a given symmetry. Obtaining the coefficient matrix for 
multiple energies then amounts to the simple matrix operation 
defined in Eq. (14) which significantly reduces the CPU time. 
Moreover, exchange is a short-range effect which means that 
the exchange kernel ,..a, ,, t~t~.tr, r ) is significant only for a small r '  
domain about a given r value. In the finite-element code, we 
can ignore the double integrals obtained from discretizing the 
second integral term in Eq. (13) if the coupled elements 17 and 
np are different by more than a predefined threshold value. 
This has the effect of transforming the second integral term in 
this equation to a sparse matrix with p'- partitions. These parti- 
tions are diagonal with a bandwidth that is dependent on the 
threshold value. The threshold value can then be systematically 
increased until the desired convergence in cross sections is 
achieved. This implies that in the FEM formulation exact ex- 
change can be approximated by a sparse matrix. For molecules 
with a large number of  channels, the memory and CPU time 
advantages of  the finite-element method obtained from control- 
ling the bandwidth of  the exchange matrix is very significant. 

IV. RESULTS 

There are five parameters whose proper values are very criti- 
cal in order to obtain stable cross sections. These parameters, 
three of  which are the upper limits on various summations in 
the radial scattering Eqs. (6)-(8), are defined below: 

1. A ..... The maximum order of the Legendre polynomials 
included in the expansion of the interaction potentials in Eqs. 
(7) and (8). 

2. lm,x. The maximum order of the partial waves included 
in the BF-FN scattering equations. 

3. 1~,~. The maximum order of the partial waves included 
in the exchange part of the BF-FN scattering equations. 

4. /,",Ii~. The maximum order of  the partial waves included 
in the expansion of  the bound molecular orbitals in terms of 
spherical harmonics. 

5. rm~. The radial distance at which the K-matrix is ex- 
tracted. 

In what follows, we will present the cross sections obtained 
for electron-H, and electron-N, scatterings. The proper values 
of these parameters to assure the stability of the cross sections 
will also be discussed for these two systems. 

A. e-H,. Systems 

We have applied the FEM and R-matrix propagation tech- 
nique to electron-H, scattering. Table I shows the cross sections 
obtained using this method and the corresponding results from 
the LA approach for ~ and H symmetries. In both calculations, 
we have used five channels (m = p = 5) with r = a set to 10 
bohr. These number of  channels translate to lm~ = /~o~ = 8 + 
/,,,~, with /rnin determined by the symmetry. The K matrix is 
extracted at rm,x = 130 bohr with l~'?~i~ = 8 and A .... = 6, 7, 8, 
and 7 for ~e, £,,, II , ,  and I-I, symmetries, respectively. The 
energy range used for comparison is 0.047 to 7.0 eV. From 
this table, it is clear that the results obtained from these two 
approaches are in agreement to within less than 1% for each 
energy and symmetry. 

We have also taken advantage of the short range effect of 
exchange interaction to make its FEM matrix representation 
sparse. In our code, the p2 partitions associated with this effect 
have been adjusted in bandwidth until the minimum required 
value to achieve stable results is obtained. Our investigation 
shows that exchange effect is significant (on an average sense) 
only if two coupled elements n and np differ by at most 3. 
With an average mesh size of 0.7 bohr for the e-H2 system, 
this translates to an effective exchange interaction radii of about 
2 bohr. 

B. e-N2 Systems 

We have performed extensive convergence studies on e-N., 
cross sections for the four lowest BF-FN electron-molecule 
symmetries (£x, £,,, II~,, II,,) at energies up to 1.0 Ry. We have 
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T A B L E  I 

Calculated Values of the e-H2 Cross Sections in Square Bohr from the Finite-Element and Linear-Algebraic Techniques 

E~ E,, H e H,, Total 

E(eV) LA FEM LA FEM LA FEM LA FEM LA FEM 

0,047 28.275 28.208 0,388 0.388 0.012 0.012 0.016 0.016 28.691 28,624 
0.050 28.474 28.408 0.402 0.402 0.012 0,012 0.018 0,018 28.906 28.840 
0,060 29.082 29,015 0.449 0.448 0.014 0,014 0.025 0.025 29.570 29.502 
0,070 29,619 29.553 0,496 0.495 0.015 0.015 0.034 0.034 30.164 30.097 
0.080 30,100 30.034 0.543 0,542 0,016 0.016 0.044 0,044 30.703 30,636 
0.090 30.535 30.469 0,589 0.588 0.017 0,017 0,054 0.054 31,195 31.128 
0.100 30.931 30.865 0.635 0.633 0.018 0.018 0.066 0.066 31.650 31.582 
0,200 33.653 33.590 1.112 1.108 0.027 0.027 0,204 0.203 34,996 34.928 
0.300 35,214 35.154 1.627 1.619 0.035 0.035 0.370 0.368 37,246 37,176 
0,400 36,213 36,157 2.181 2.169 0.042 0.042 0.551 0.549 38.987 38,917 
0.500 36.876 36,825 2,773 2.756 0.049 0,049 0,742 0.739 40.440 40,369 
0.700 37,595 37,551 4.056 4.028 0.063 0.063 1.142 1.136 42.856 42.778 
0.900 37.826 37,789 5.443 5.402 0,077 0,077 1,553 1,544 44.899 44.812 
1,000 37.825 3Z791 6.165 6.117 0.084 0.084 1,759 1,749 45.833 45.741 
2,000 35.912 35,904 13.261 13.150 0.150 0.150 3.661 3.637 52.984 52.841 
3,000 32.925 32.925 17.845 17.722 0.213 0.212 5.050 5.019 56.033 55.878 
4.000 29.917 29,921 19,353 19.252 0.273 0.271 5.888 5.856 55.431 55,300 
5.000 27.140 27.145 18.995 18.918 0,329 0.326 6.291 6.258 52,755 52.647 
6.000 24.646 24.651 17,845 17,789 0.379 0.377 6.394 6.361 49,264 49.178 
7.000 22,432 22.432 16.471 16.434 0.425 0.422 6.308 6.279 45.636 45,567 

Note. All the results shown are based on five channels (m = p = 5) with r = a set to l0 bohr. This table shows that for all symmetries, the results obtained 
from these two methods are in agreement to within less than I%. 

determined the m i n i m u m  required values  o f  the five parameters  

discussed earl ier  to obtain 1% accuracy in the cross sect ions 

for each symmetry. The proper  values o f  lma~, l~, x ,  lm°x, and 

• '~max a r e  given  in Table  II. To  achieve  the desired level  o f  

accuracy in the cross sections, rm,x has to be set to 900 bohr  [ 15]. 

Tables  III and IV compare  the cross sections we have calcu-  

lated for the ~g, ~ , ,  Fig, and H,, symmetr ies  using F E M  and 

L A  approaches  in the energy range 0.0007 to 1.0 Ry. In these 

tables, the F E M  results are listed in two different  columns.  The  

co lumn labeled FB refers to the case where  the exchange  part 

o f  Eq. (6) is represented by a matr ix which h a s p  2 full partitions. 

The  results obtained by enforc ing  sparsity into the exchange  

matr ix are g iven  in the co lumn labeled PB (partial bandwidth).  

T A B L E  II 

The Convergence Parameters Used in the LA 
and FEM Calculations 

Symmetry 1,.~, l~, l ~  Am~ 

Y'8 58 22 10 116 
E, 59 21 10 117 
[I s 32 20 10 62 
Fin 31 11 10 61 

Note. These values are determined such that 1% accuracy in e-N: cross 
sections are obtained for each symmetry (~g, Eo, H 8, l-lu). 

F rom these tables, it is clear  that our  results f rom F E M  and 

L A  approaches  are in ag reement  to within less than 1% for 

each energy and symmetry .  Our  studies indicate that for the 

e-N2 system, exchange  is significant  only i f  two coupled  ele- 

ments differ  by at most  5. With  an average  mesh size o f  ~-, this 

translates to an ef fec t ive  exchange  interact ion radii o f  about  

1.7 bohr. 

In Figs. 1 through 5, we  plot  the Eg, E , ,  Fig, l-I,, and total 

e-N2 cross sections obtained f rom FEM.  In these figures, we 

have also included the results publ ished by Morr i son  and Saha 

[9]. It is ev ident  f rom these graphs that there is a significant  

d i f ference be tween  the two results especia l ly  for  Fig symmet ry  

near  resonance.  Note  that for this symmet ry  the electron energy 

at which  the m a x i m u m  cross section is attained has shifted 

f rom 0.18 Ry in the previous  calculat ions  to 0.2 Ry  in the F E M  

results. S ince  Fig is the dominan t  symmet ry  in the energy  range 

0 .15 -0 .23  Ry, this d i f ference  is also reflected in the total cross 

sections shown in Fig: 5. The  discrepancy observed  be tween  

the new and old e-N2 cross sections is due to the di f ference 

in conve rgence  parameters  used in the scat ter ing calculat ions  

[9, 16]. 

V. C O M P A R I S O N  O F  CPU T I M E  A N D  M E M O R Y  U S A G E  

In this section, we  compare  F E M  and L A  techniques  in terms 

o f  C P U  t ime and m e m o r y  usage required to obtain cross sect ions 
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TABLE III 

Calculated Values of the e-N2 Cross Sections (in Square Bohr) for E Symmetries Using Finite-Element Method with Full Bandwidth 
FEM(FB)) and Partial Bandwidth (FEM(PB)) Implementations and the Linear-Algebraic (LA) Technique 

E(Ry) FEM(FB) FEM(PB) LA FEM(FB) FEM(PB) LA 

0.0007 5.435 5.389 5.420 0.191 0.191 0.191 
0.0015 7.373 7.319 7.356 0.124 0.124 0.124 
0.0029 9.844 9.783 9.825 0.070 0,070 0.070 
0.0051 12.714 12.646 12.668 0.036 0.036 0.036 
0.0100 17.151 17.074 17.102 0,014 0.014 0.014 
0.0500 30.118 30.022 30.036 0.054 0.054 0.055 
0.1000 33.460 33.361 33.395 0.491 0.489 0.491 
0.1500 33.443 33.348 33,383 1.285 1.282 1,284 
0.2000 32,285 32,197 32.236 2.237 2.233 2.228 
0.2500 30.704 30.623 30.666 3.217 3,213 3.207 
0.3500 27.271 27.208 27.253 5.024 5.019 5.011 
0.5000 22.534 22.494 22.514 7.089 7.084 7.074 
0.7500 16.562 16.546 16.563 8.994 8.934 8.982 
1.0000 12.606 12.606 12.607 9,817 9.770 9.809 

Note. All the results are converged to within I% accuracy. 

which are in agreement to within 1% for both e-H_, and e-N2 
systems. 

Computation of the system coefficient matrix as described 
in Eq. (14) can significantly reduce the CPU time in the FEM 
approach to obtain cross sections for more than one scattering 
electron energy. Once a new electron energy is introduced, the 
k0 term in this equation is updated and the new R-matrix is 
found. The LA approach, on the other hand, is based on an 

integral form of the BF-FN radial equation obtained from the 
free-particle Green's function. The system coefficient matrix 
that results from this approach cannot be represented in a form 
similar to Eq. (14) with the energy term isolated. This implies 
that for different electron energies the entire system equations 
have to be recomputed resulting in a significantly higher CPU 
time compared to the FEM approach. 

We can also take advantage of the short-range effect of 

TABLE IV 

Calculated Values of the e-N2 Cross Sections (in Square Bohr) for H Symmetries Using Finite-Element Method with Full Bandwidth 
(FEM(FB)) and Partial Bandwidth (FEM(PB)) Implementations and the Linear-Algebraic (LA) Technique 

H~ H,, Total 

E(Ry) FEM(FB) FEM(PB) LA FEM(FB) FEM(PB) LA FEM(FB) FEM(PB) LA 

0.0007 0.012 0.012 0.012 0,547 0.547 0.547 6.185 6.138 6.170 
0.0015 0.009 0.009 0.009 0,722 0.722 0,722 8,228 8.174 8.211 
0.0029 0.007 0.007 0.007 0.938 0.938 0.938 10.860 1 0 , 7 9 9  10.840 
0.0051 0.007 0.007 0.007 1.170 1.171 1.171 13.926 1 3 . 8 5 9  13,881 
0.0100 0.011 0.011 0.011 1.467 1.468 1.468 18.644 1 8 . 5 6 8  18.595 
0.0500 0.235 0,235 0.236 1.164 1,168 1.167 31.572 3 1 . 4 7 9  31.493 
0.1000 2.355 2.354 2.367 0.255 0.258 0.255 36.560 3 6 , 4 6 2  36,508 
0.1500 34.276 34.240 34.402 0.039 0.039 0.039 69.043 6 8 . 9 0 9  69.108 
0.2000 75,533 75.588 75.295 0.340 0.335 0.339 110.395 110.353 110.099 
0.2500 21.999 22.007 21.829 0.931 0.924 0.931 56.851 5 6 . 7 6 7  56.633 
0.3500 10.120 10.121 10.079 2.452 2.439 2.443 44.867 4 4 . 7 8 7  44.785 
0.5000 7.343 7.343 7.332 4,715 4.698 4.703 41.682 4 1 . 6 1 9  41.623 
0.7500 6.391 6.391 6.381 7.529 7.511 7.517 39.476 3 9 . 3 8 1  39.444 
1.0000 6.057 6.057 6.048 9.293 9.277 9.283 37.774 3 7 . 7 1 0  37.747 

Note. All the results are converged to within 1% accuracy. The total cross sections (summed over all symmetries) are also shown. 
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exchange interaction to make its FEM matrix representation 
sparse and thereby to reduce the memory requirement. As men- 
tioned before, the p2 partitions within the coefficient matrix A 
which are related to exchange have adjustable bandwidths. 
These bandwidths can be set to the minimum required value 
such that the desired convergence in cross sections is achieved. 
This implies that within the FEM scheme we can approximate 
the full matrix representation of exact exchange with a sparse 
matrix without loss of  accuracy. This approximation would 

significantly reduce the memory and CPU time requirement of 
the FEM method, especially for large systems such as e-N:. In 
what follows, we discuss the CPU time and memory usage of 
FEM and LA approaches with and without the two advantages 
of  FEM discussed above taken into account. 

A. e-H: Systems 

To obtain cross sections which are accurate to within 1%, 
the FEM and LA codes require full system coefficient matrices 
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FIG. 2. Comparison of new (FEM--solid) and old (Morrison and Saha--dash) cross sections for the e-N2 scattering in X. symmetry. 
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of sizes 150 and 275, respectively. On the average, the CPU 
time required for both codes to compute cross sections on a 
SPARC station 2 with 20 Mbytes of memory is less than 30 s 
for a given energy and symmetry. However, approximating 
exchange with a sparse matrix reduces the density of the FEM 
system matrix to 35%. Since nonzero elements are the only 
ones actually stored, this reduction in density translates to a 
reduction in the memory requirement. Moreover, FEM demands 

half the CPU time of the LA approach to compute cross sections 
for 20 energies and four symmetries in one computer run. 

B. e-N2 Systems 

For a large system such as e-N2, FEM is superior to the LA 
approach with or without the advantages of the FEM taken into 
account. Figure 6 compares the average CPU time requirements 
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of the two codes to compute the cross section for one energy 
at one symmetry [ 17]. All the results shown in this figure pertain 
to a SPARC station 10 with four HyperSPARC processors and 
160 Mbytes of memory. In Fig. 6, SE (single energy) refers to 
scattering calculations involving one electron energy at a time 

without taking advantage of Eq. (14). Scattering calculations 
involving multiple electron energies are denoted by ME (multi- 
ple energies). This figure shows that FEM is faster than LA 
approach by a factor of four even if scattering calculations 
involving a single electron energy and full matrix representation 
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FIG. 6. The average CPU time requirement (in seconds) for the LA and 
FEM codes. The times are obtained by averaging the CPU times for Z~ at 
0.0007 Ry, .Y_,~ at 1.0 Ry, 1-I~ at 0.2 Ry, and 17,, at 1.0 Ry. All calculations are 
performed on a SPARCstation 10 with four HyperSPARC processors and 160 
Mbytes of memory. The notations used in this figure are: LA = linear algebraic; 
FEM(FB;SE) = finite element with full bandwidth and single scattering electron 
energy; FEM(PB;SE) = finite element with partial bandwidth and single scatter- 
ing electron energy; FEM(PB;ME) = finite element with partial bandwidth 
and multiple scattering electron energies. 
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LA FEM(FB) FEM(PB) 

Symmetry & energy Size Density Size Density Size Density 

~-~ @O.O007Ry 5460: 100% 1140-' 27% 1140: 19c/c 
E,, @ 1.0000Ry 3990: 100% 1140: 27% 1140: 19ok 
H~.@0.2000Ry 4336: 100% 1280: 41% 1280 -~ 21% 
H,, @ 1.0000Ry 2128-' 100% 608" 26% 608: 20% 

Note. Here, FB and PB represent the full and partial bandwidth implementations of the FEM method, respectively. The density gives the percentage of the 
nonzero elements in the system matrix that are actually stored. 

of exchange are assumed. When the advantages of FEM are both 
taken into account, FEM is faster by a factor of 10, compared to 
the LA code. 

Next, we compare the memory requirements of the two ap- 
proaches to obtain stable results. Table V shows the size and 
density of the system matrix obtained for the e-N, system as a 
function of energy and symmetry. In this table, it is important 
to note that the density of the FEM system matrix is reduced 
when exchange is modeled by a sparse matrix. The number of 
nonzero elements in the system matrix which needs to be stored 
for each case is plotted in Fig. 7 for both FEM and LA methods. 
This figure shows that for large molecules such as N~, the 
memory requirement of FEM is significantly less than the 
LA approach. 

VI.  C O N C L U S I O N  

We have applied the finite-element method and R-matrix 
propagation technique to study electron-molecule collision 
with exchange implemented rigorously. We find the cross sec- 
tions for the e-H, and e-N2 systems to be in agreement to within 
1% with the results we have generated from the linear algebraic 
approach. The results we have obtained for e-N2 cross sections 
are not in close agreement with those reported earlier by Mor- 
rison and Saha near IIg resonance energies due to significant 
differences in values of  the convergence parameters used in 
the two studies. 

Our finite-element implementation of exact exchange points 
out two advantages of  this method: (1) scattering calculations 
involving multiple electron energies can be carried out in one 
computer run to significantly reduce the CPU time and (2) 
exchange can be approximated by a sparse matrix which reduces 
the density of  the FEM system matrix and thereby the memory 
requirement. We find that the CPU time and memory require- 
ments of  FEM are far less than the LA approach to obtain 
converged cross sections especially for e-N, system. As a result, 
we conclude that the combination of FEM and R-matrix propa- 
gation technique is a very efficient method in terms of computer 
resources to study electron-molecule scattering. 
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